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 What is considered as effective ventilation?

 No further injuries

 Patient receiving sufficient O2

 Good patient interaction with ventilation

 Recovery
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How do we measure effective ventilation?

 What is the surrogate of an effective mechanical ventilation?

 Why Ventilator Free Days (VDF) or Length of Mechanical ventilation (LOMV)?
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This study aimed to:

 Estimate the sample size required for a randomised 
controlled trial for mechanical ventilation.
 Sample size for the change in LoMV detection

 We compare two methods
 Using model-based method (Altman-nomogram)

 Using simulation-based method (Monte-Carlo)

 Using ICU patients data from a single hospital Intensive 
care unit (From 2011-2013)



Christchurch ICU Record 
 Age, Apache diagnostic code, ICU mortality, length of mechanical ventilation, 

ventilation modes.

 Of the 3907 patients admitted, 2921 patients (75%) required MV, and 2534 
(65%) patients were invasively ventilated



Christchurch ICU Record 
 Age, Apache diagnostic code, ICU mortality, length of mechanical ventilation, 

ventilation modes.

 Of the 3907 patients admitted, 2921 patients (75%) required MV, and 2534 
(65%) patients were invasively ventilated

 Cohort A LoMV mean (± SD) LoMV for Cohort A is 3.23 ± 7.03 days (median = 
0.72 days [IQR: 0.24-2.62]).
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 Altman Nomogram assumes normally distributed data sets, and thus, 

not suitable for data that are skewed to the left.

 Hence, we tried a simulation based approach to estimated sample size

 Using Simulation based approach, we are able to impose a selection 
criteria on patients 

 (1) Patients who are likely to be discontinued from MV within 24 hours

 (2) Patients with increase intracranial pressure

 (3) Patients who have significant weakness from any neurological disease

 (4) Patients who have asthma as the primary presenting condition or a 
history of significant chronic obstructive pulmonary disease, and 

 (5) Patients who are pregnant

 How do we know which patient? APACHE II Diagnostic codes



Christchurch ICU Record 

Code Description Code Description

N
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100 Cardiovascular 

P
o

st
 -

O
p

er
at
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e

1200 Cardiovascular

200 Respiratory 1300 Respiratory

300 Gastrointestinal 1400 Gastrointestinal

400 Neurological 1500 Neurological

500 Sepsis 1600 Trauma

600 Trauma 1700 Renal/ Genitourinary

700 Metabolic 1800 Gynaecological

800 Haematology 1900 Musculoskeletal

900 Renal disorder 2100 Haematological

1000 Other medical disorders 2200 Metabolic

1100 Musculoskeletal/ Skin  disease

0 No diagnosis entered



Monte-Carlo Simulation
 Non-operative neurological (400)

 Post-operative neurological (1500)

 Chronic obstructive pulmonary disease (206)

 Asthma (209)

 Head trauma with or without multi trauma (601)

 Multi trauma with spinal injury (604)

 Isolated cervical spine injury (605)

 Post operation patients: head trauma with or without multi trauma (1601)

 Post operation patients: multi trauma with spinal injury (1604)

 Post operation patients: isolated cervical spine injury (1605) 

 Pregnancy-related disorder (1802). 

 Patients with LoMV less than 1 day and more than 30 days were also excluded. 

These exclusion criteria were chosen based the clinical implication that these 
patient may not benefit from a MV intervention, or could be harmed in some 
cases. 
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benefit and be eligible for the study was reduced to 744 (19% of total patients 
admitted to ICU or 29% of patients requiring invasive MV). 

 Cohort B mean LoMV was 5.81 ± 6.30 days (median = 2.92 days [IQR: 1.67-
7.38]), 

 Significantly different from Cohort A (p < 0.05 using Student t-test and 
Wilcoxon ranksum test and Kolmogorov-Smirnov test).
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significantly different from control group.

 Student t-test

 Student t-test (log scale)
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5. Power 
Analysis

 Each Monte-Carlo simulation iteration will generate a p-value for

each statistical test.

 For a given sample size and significance level α, statistical power is

evaluated as the proportion of iterations for which the p < α.

 E.g. for 10000 Monte-

Carlo iterations, if p < α

for 84% (8400 iterations),

Power = 0.84.
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Discussion
 One of the ideal inclusion criteria in other studies is to focus on patients with a 

more severe form of respiratory failure, such as the acute respiratory distress 
syndrome (ARDS). 

 LoMV distributions may vary between centres (Van Der Lee et al., 2009). This 
variability in patient distribution means that the Ntotal derived from this study 
may only be applicable to the participating centre or other regional centres that 
have similar characteristics (Van Der Lee et al., 2009). 

 The changes of LoMV used in this study were arbitrarily chosen and may not 
represent the true possible LoMV change for any given intervention (Schulz 
and Grimes, 2005). 

 Thus, given the effective sample size and percentage difference in LoMV
needed, the results suggest that the clinical outcome (LoMV) requires a large 
sample size due to the high variability in the population.



Final Thoughts
 Trial inclusion and exclusion criteria is important to capture the 

targeted group.

 A specific group or,

 A generalised group

 There are other co-founding factors that can affect MV deliveries.

 Intention to treat

 Protocol deviation

 Effective protocol

 MV is a supporting therapy
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