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Respiratory Failure and Mechanical Ventilation

Patients with impaired lung functions, collapse lung,
resulting in poor gas exchange
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" Respiratory Failure and Mechanical Ventilation

Patients with impaired lung functions, collapse lung,
resulting in poor gas exchange

Pneumonia, Trauma, Sepsis, Drowning, Drug overdose,
aspiration...etc
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Respiratory Failure and Mechanical Ventilation

Patients with impaired lung functions, collapse lung,
resulting in poor gas exchange

Pneumonia, Trauma, Sepsis, Drowning, Drug overdose,
aspiration...etc

Mechanical Ventilation (MV) is the primary support for
patients with respiratory failure. ,_

e Provide a pressure/ air volume

e Full control ventilation

e Partial support S /7 ‘;;' 2‘}_
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Respiratory Failure and Mechanical Ventilation

Patients with impaired lung functions, collapse lung,
resulting in poor gas exchange

Pneumonia, Trauma, Sepsis, Drowning, Drug overdose,
aspiration...etc

Mechanical Ventilation (MV) is the primary support for
patients with respiratory failure. ,_
e Provide a pressure/ air volume
e Full control ventilation
e Partial support

Respiratory mechanics to guide
MV therapy
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Conventional Single Compartment Lung Model

P, (t) =R, xQ(t) + E. xV(t) + P, Q(t), P,,(t)
P, - Airway pressure ~ rmmsssssses > l
t - Time AP(t) Resistance, R,,
R, - Airway resistance
Q _Airflow  TTTIITTme= —
E, - Respiratory System Elastance
Elastance, E V(t)
1% - Lung volume rs
P, - Offset pressure
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* Lung elastance (E,) is an indicator for recruitment and
overdistension

e PEEP can be set at minimal Elastance to maximise recruitment
while minimising the risk of overdistension

* Monitoring Elastance continuously provides information the
on patients disease state progression

Reference

Suarez-Sipmann F et al., Crit Care Med 2007, 35:214 - 221.
Carvalho A et al., Critical Care 2007, 11:R86.

Lambermont B et al., Critical Care 2008, 12:R91.

Chiew YS et al., BioMedical Engineering OnLine 2011, 10:111.
Pintado M-C et6 al., Respiratory Care 2013, 58:1416-1423.
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... patient is spontaneously breathing? Can we

still use the single compartment lung model?

Yes... but we need more equipment
To measure oesophageal pressure using a balloon catheter

P, (¢t) - P, (t)= R, *Q(t) + E,*V(¢t) + P,

Tube in ) / \
P, - Pleural Pressure or measured SPHaRE /\b}q |

as Oesophageal pressure

Trachea

Esophagus
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still use the single compartment lung model?

Tube in . \
esophagus /\

Trachea

But...

. Esophagus
e Invasive Pes

* Approximation

* Dependent of location of the measurement
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if... patient is spontan

~ still use the single compartment lung model?

© Original Artist
Reproduction rights obtainable from
www. CartoonStock.com

. But LA X ]
e Invasive SERmaEs
. . * You could go home lomorrow, but it will take the plumber
* Approximation three days to disconnect you. *

* Dependent of location of the measurement

* We need an alternative
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Airway resistance, R,

Pressure in the Pleural Space
- P,
«—==Constant Chest wall, ECage

Lung Elastance, E,;,,

- Deman(_j Elastanc_e, Egemang ~ Varies
depending on patient spontaneous
breathing effort

BIOMEDICAL,
UNIVERS OP
ciN%ER‘EéRY ENGINEERING.

cumwmn i i



/A/Tiﬁ/e—Varying ElaW

l alt), Poft)

= Pressuredrop due to
airway resistance, P,

@ Pressure due to Chest wall, P, ConStant CheSt Wa”1 Ecage

Pressure in the lung, P,,,, L un g EI astan Ce’ Elung
~ — e - ” IPressurech;réiet’;;l;ee;;o;::t::’:jzontaneous Demand EIaStance’ Edemand - Varles

depending on patient spontaneous
breathing effort

P, (1)=R xQ(t)+E, xV(t) (1)
Edrs(t)=Ecage(t)+Edemand(t)+Elung(t) (2')
Paw(t) =(Ecage(t) +Edemand(t) +Elung(t) ) X V(t)+Rrst(t) (3)
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A time-varying elastance model

Elung
A time-varying measure of the elastic properties of the lung or the collection of alveoli.

Elung decreases if overall alveoli recruitment outweighs the pressure build-up. Elung will
increase if the overall alveoli are stretched with lesser or no further recruitment.

Echest
The elastic properties of the chest wall, including the rib cage, and the intercostal muscles.

This elastance subcomponent can be assumed not to vary with disease-state and is thus a
patient-specific

Edemand

Patient-specific inspiratory demand, which varies depending on patient-specificand breath-
specific effort.

The value of Edemand can be negative (Edemand < 0), as it represents the reduced apparent
elastance due to the patient’s inspiratory effort creating a pressure reduction in the pleural
space to allow negative pressure ventilation.

The negative Edemand proposed in this study is a construct, to capture this negative
pressure changes that contribute the increasing lung volume.
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Clinical Trials to test out the Extended Model

* Patients who are partially ventilated.

e Using Pressure Support mode

e Using Neurally Adjusted Ventilatory Assist mode
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More Clinical Trials to test out the Extended Model

Patients who are partially ventilated.
e Using Pressure Support mode
e Using Neurally Adjusted Ventilatory Assist mode

Messerli FH: Chocolate Consumption, Cognitive
Function, and Nobel Laureates. New England Journal
of Medicine, 0:null.
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More Clinical Trials to test out the ‘Extended’ Model

Patients who are partially ventilated.
e Using Pressure Support mode
e Using Neurally Adjusted Ventilatory Assist mode

22 patients in University Hospital of Geneva (Switzerland), Cliniques
Universitaires St-Luc (Belgium)

Edrs(t) =Ecage(t) +Edemand(t) +Elung(t)
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Airway Pressure, Volume during Inspiration

Pressure Support NAVA
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/ drs Trend during Partially Assisted Ventilation

Pressure Support Neurally Adjusted Ventilatory Assist
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/Eﬁrend during Partially Assisted Ventilation
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General Observation

Edrs(t)=Ecage(t) +Edemand(t) +Elung(t)

E, . begins as a negative value, again due to the negative
pressure created in the pleural space due to patient
inspiratory demand

E, . was typically wider in NAVA than in PS, occurring in 18
out of 22 patients (p < 0.05)

E, .. > o implies that the positive pressure ventilation
contributes or adds to the patient-specific lung elastance.
Therefore, E,; . > 0 is a measure of patient lung condition

and response to MV
o
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Study

Clinical Utilisation of Respiratory Elastance Trial (CURE)

Spontaneous breathing

Paralysed

Regaining Spontaneous
breathing
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Conclusions

An extended model that defines conventional respiratory elastance
into 3 separate components is presented.

The proposed model was able to capture unique dynamic respiratory
mechanics for spontaneously breathing patients during PS and NAVA,
which is otherwise not possible without added invasive manoeuvres
that interrupt conventional care methods.

It is a fully general model that is applicable to all MV modes and
conditions with the resulting potential to ‘standardise’ treatment for all
sedated and non-sedated MV patients.
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Messerli FH: Chocolate Consumption, Cognitive Function, and Nobel
Laureates. New England Journal of Medicine 2012, 367:1562-1564.
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Just FYI

Ortega FB: The intriguing association among chocolate consumption, country's economy and Nobel Laureates.
Clinical Nutrition 2013, 32:874-875.
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Just FYI

Maurage P, Heeren A, Pesenti M: Does Chocolate Consumption Really Boost Nobel Award Chances? The Peril of
Over-Interpreting Correlations in Health Studies. The Journal of Nutrition 2013, 143:931-933.
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