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Abstract: This paper develops a novel gray-box form of the ICING (Intensive Control Insulin-
Nutrition-Glucose) model (Lin et al. (2011)) used both for glycemic control of Intensive Care
patients and implementation of virtual trials. The computations of the system trajectories and
their statistical features like mean value, standard deviation, and slice distribution were carried
out using a stochastic Runge-Kutta method in the presence of Wiener-type diffusion process
drift term. Parameter estimation of the resulting stochastic model is achieved via maximum
likelihood technique. The global optimization problem was solved using genetic algorithms,
simulated annealing and Nelder-Mead procedures. The parameter estimation has been carried
out at different system noise levels, and the optimal parameters corresponding to the maximum
of the likelihood function were selected. While the gray-box model yielded improvement, it
was not significant according to the likelihood ratio test in the case of the examined model
parameters. Further investigations including estimation of more parameters simultaneously,
adding drift terms to more equations, would be necessary to yield a definitive improvement
on this deterministic baseline model. The Mathematica code used is transparent and can be
easily applied to develop other similar stochastic system models.
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1. INTRODUCTION

Inter and intra patient variability in the appearance and
action of therapeutic drugs provides a solid reason to
model their Pharmaco-kinetics and dynamics as partly
stochastic processes. There are some research papers deal-
ing with stochastic differential equations applied to phar-
macokinetic/pharmacodynamic processes published in the
last decade. Recently Leander et al. (2015) used one-
compartment pharmacokinetic model in preclinical study
of nicotinic acid kinetics in obese Zucker rats. Using
stochastic model they could separate measurement noise
from uncertainty in model dynamics. Also Leander et al.
(2014) provide examples for stochastic modelling and pa-
rameter estimation using in silico data from the FitzHugh-
Nagumo model for excitable media and Lotka-Volterra
predator-prey system. They proposed regularization of the
objective function that can lead fewer local minima and
can be solved by efficient gradient based methods instead
of global minimization.

Concerning blood glucose-insulin kinetics, Tornøe et al.
(2004) revealed that stochastic terms could take into
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consideration unknown or incorrectly modelled dynamics
of the system. After describing the methodology of the
stochastic modelling and parameter estimation, they em-
ployed a simplified form of Bergman’s minimal model to
compare stochastic and deterministic modelling and found
that the system noise parameter in the glucose equation is
significant.

Duun-Henriksen et al. (2013) systematically analysed a
gray-box variant of an extended minimal model and found
two drift-terms are enough to compensate error in the
model equations. They could demonstrate significant im-
provement in reducing model error via stochastic mod-
elling. To carry out computations they used a statistical
software CTSMR package (Continuous Time Stochastic
Modelling in R).

Vilhjálmsdóttir (2013) employed deterministic as well as
stochastic minimal model to investigate insulin sensitivity.
He added diffusion terms only to the insulin and glu-
cose equations and used the results of the deterministic
model as initial guess for the parameter estimation of the
stochastic model. He found that stochastic approach could
give better estimate of the insulin sensitivity than the
deterministic one. Finally, Kristensen et al. (2004) also
described the methodology of the parameter estimation
of stochastic differential equations and illustrated software



tools CTSMR as well as MoCaVa which runs under MAT-
LAB.

The interested reader can find a comprehensive overview
in Donnet and Samson (2013) about the application of
stochastic pharmacokinetic/pharmacodynamic modelling.

ICING is a highly sophisticated model developed for criti-
cally ill patients as a tool for in silico design and real-time
application of glycemic control (Lin et al. (2011); Evans
et al. (2012); Fisk et al. (2012); Le Compte et al. (2012)).
Model parameters were estimated and identification of the
insulin sensitivity profile, Si(t) was achieved employing an
integral-based method (Hann et al. (2005)). To account for
future variability a non-parametric stochastic model based
on clinical measurements is employed (Lin et al. (2006);
Le Compte et al. (2010)). However, in this way all of the
dynamic errors were lumped into the Si(t) profile, which
caused unacceptable high frequency changes in the profile.

To regularize the Si(t) profile an additional stochastic
term was suggested in the glucose equation, which can
capture unmodelled dynamics and measurement noise, but
is not be incorporated in the Si(t) profile (Fisk (2014)).
It also suggested a non-parametric method to extend
the glucose equation with a stochastic term. However,
until now the stochastic Ito version of the ICING model
equations with parametric stochastic noise term have been
not investigated.

In this contribution we illustrate the methodology of the
stochastic simulation and parameter estimation for this
gray-box variant of the ICING model. We demonstrate
how to get optimal noise level term when parameter es-
timation take places using the stochastic model. In par-
ticular the first Section, the white-box ICING model and
its stochastic variant, the gray-box ICING model are pre-
sented. In the second Section the stochastic simulation of
the process is considered. In the third Section the param-
eter estimation of the stochastic model is developed. In
this study only two parameters were re-estimated with the
stochastic model, namely VG and VIdistribution volumes
that govern key insulin and glucose concentration. Finally
the deterministic model - with zero system noise - is com-
pared to the optimal stochastic model using a likelihood-
ratio test to asses improvements and/or errors.

2. MODELLING

2.1 White-box model

White-box models are mainly constructed on the basis
of knowledge of physics about the system and are the
PI/PD modelling used clinically. Solutions to ODE’s are
deterministic functions of time, and thus these models are
built on the assumption that the future value of the state
variables can be predicted exactly despite the fact that no
model is perfect and there is always measurement error.

The ICING(Intensive Control Insulin-Nutrition-Glucose)
pharmacokinetic-pharmacodynamic model (Lin et al. (2011))
defines glucose-insulin kinetics and dynamics in critically
ill patients. The deterministic, white-box model is well
validated (Chase et al. (2010b)), and represented by the
following equations,

dG(t)

dt
= −pGG(t)− SI(t)G(t)

Q(t)

1 + αGQ(t)
+

P (t) + EGP−CNS

VG
,

(1)

dQ(t)

dt
= nI(I(t)−Q(t))− nC

Q(t)

1 + αGQ(t)
, (2)

dI (t)

dt
= −nKI(t)− nL

I(t)

1 + αII(t)
−

nI(I(t)−Q(t)) +
uex(t)

VI
+ (1− xL)

uen(t)

VI
,

(3)

dP1(t)

dt
= −d1P1(t) +D(t), (4)

dP2(t)

dt
= −min (d2P2(t), Pmax) + d1P1(t) (5)

P (t) = min (d2P2(t), Pmax) + PN (t) (6)

uen(t) = min (max (umin, k1G(t) + k2) , umax) (7)

The values of the model parameters and their descriptions
for the ICING model and the exogenous input variables,
functions of time can be found in Fisk (2014).

2.2 Gray-box model

An essential part of model validation is the analysis of
residual errors defined as the deviation between the true
observations and the one-step predictions provided by
the model. This validation method is based on the fact
that a correct model with all necessary dynamics leads to
uncorrelated residuals. This outcome is rarely obtainable
for white-box models. Hence, in these situations, it is not
possible to validate ODE models using standard statistical
tools.

However, by using a slightly more advanced type of equa-
tions, this problem can be solved by replacing ODEs
with stochastic-differential equations (SDEs) representing
a gray-box model and incorporating stochastic behaviour
of the system, like modelling error, unknown disturbances,
system noise and any other relevant variabilities. The
stochastic SDE model (gray-box model) can be considered
as an extension of the ODE model by introducing system
noise in the form of a Wiener process.

The application of the gray-box model was motivated
directly by the fact that the noise of the residual of the
glucose equation Eq.(1), see Fig. 1. It was found to be a
Wiener process (Fisk (2014)) thus defined:

GX(t)|t=τ ≈ N (0, σ). (8)

Therefore, it is reasonable to compensate the simulation
error in the equation of G(t) by an additional stochastic
term that should be added, namely a Wiener process.

The resulted gray-box model will be differ from the white-
box model in the first differential equation describing the



Fig. 1. Noise in the residual of Eq. (1) (Fisk (2014))

Fig. 2. Input functions of the ICING model from the
clinical data

glucose dynamics (Eq. (1)). The SDE form of the equation
looks like:

dG(t)

dt
= −pGG(t)− SI(t)G(t)

Q(t)

1 + αGQ(t)
+

P (t) + EGP−CNS

VG
+ σdW(t),

(9)

where σ is the diffusion constant and W (0, 1, t) is a Wiener
process also known as Brownian motion, a continuous-
time random walk. Practically, it is an integrated white
noise process.

3. SIMULATION

Input functions of the model can be seen on Fig. 2. They
are based on clinical data from a major clinical study
(Chase et al. (2008, 2010a)).

Eq. (1) and Eq. (2)-Eq. (7) represent an Ito-process which
can be simulated by Mathematica using stochastic Runge-
Kutta method. The simulated blood glucose trajectories
and a slice distribution of these trajectories at time t =
2700 min can be seen in Fig. 3 and Fig. 4, where they
clearly match typical glucose profile in this cohort.

4. PARAMETER ESTIMATION

Parameter estimation is the critical phase of the modelling
since it will determine how good the model can match
the measurement data. It goes without saying that the
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Fig. 3. Trajectories of the simulated blood glucose G(t),
in case of 100 realizations of the Ito process
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Fig. 4. A slice distribution of G(t) at t = τ in case of 100
realizations of the Ito process, at time τ = 2700

measurement process itself also has error representing the
serially uncorrelated error occurring due to imperfect accu-
racy and precision of the analysing equipment. However, if
the identified model matches the data well, then it could
also be effective in real-time control and in-silico design
(Chase et al. (2011)).

A concrete realization of G(t) is shown on Fig. 5. It is
clear the identified model captures the measured data well
over the 3 days shown. Equally, there are still some errors,
particularly at sharp peaks or troughs, where it cannot
capture these changes.

4.1 Likelihood function

As we have seen the solutions to SDEs are stochastic
processes that are described by probability distribution.
This property allows for maximum likelihood estimation.
Let the deviation of the measurements from the model as

εk(θ) = Gk − µ (G (tk) , θ) (10)
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Fig. 5. A single realization of G(t) (continuous purple line),
and Gk is the measured values of G(t) at t=tk (black
dots)

where θ = {VG, VI} and µ(G(t)) is the mean value of
the simulated trajectories, Gk is the measured values of
G(t) at t=tk. Assuming that the density function of εk
can be approximated reasonably well by Gaussian density,
the likelihood function to be maximized is defined

L(θ) =
1

2π
exp

(
−

N∑
k=1

εk(θ)2

)
. (11)

For computation we use its logarithm. Now, two model
parameters, VG and VI will be re-estimated in the SDE
model employing maximum likelihood method. These dis-
tribution volumes are approximate values, but directly
determine concentrations of glucose, VG, and insulin, VI .
Therefore, stochastic error in these one size fits all approx-
imations is justified.

4.2 Maximization of the Likelihood function

To optimize the likelihood function is not an easy task, due
to flat objective function, non-differentiable terms, more
local optimums adds computational effort. In addition a
long evaluation time of the model. Instead of using direct
global optimization, first we compute the values of the
objective function on a 25 × 25 grid, as shown in Fig. 6.
In this way, one can easily employ parallel computation
to decrease the running time. We are looking parameters
in a range 10 ≤ VG ≤ 16 and and 2 ≤ VI ≤ 5, based on
physiology (Lin et al. (2011)).

Different methods were employed to carry out global
maximization of the likelihood function, namely genetic
algorithm, simulated annealing, Nelder- Mead method and
random search technique. Genetic algorithms and random
search proved to be the most reliable. The optimization
has been carried out at different noise levels, at different
values of the σ drift parameter, as defined in Table 2.
The optimum, the maximum value of -LogL was found
at σ = 0.1 and the corresponding optimal patient specific
parameters are VG = 12.9684 and VI = 3.7357. The
parameters for the example patient were VG = 13.3 and VI
= 4 in the deterministic model (σ = 0), which are relatively
close to this patient, but not optimal.

Fig. 6. The likelihood function with local maximums
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Fig. 7. The average of the simulated blood glucose trajecto-
ries and their ± standard deviation with the measured
data points

5. SIMULATION WITH THE ESTIMATED
PARAMETERS

Fig. 7 shows the result of the stochastic simulation of
the blood glucose trajectories and their mean with these
new parameters. The width of the band around the mean
trajectory is 2σ contains all measurement data points.
Hence, the model and fit are improved.



6. DETERMINISTIC VS. STOCHASTIC MODELLING

To compare the efficiency of the deterministic and stochas-
tic modelling we should handle σ as a free parameter in the
stochastic model to be fitted. This approach yields three
free parameters to be estimated: VG, VI and σ. Carrying
out the parameter estimation for different values of σ for
the model, yields different results. The results can be seen
in Table 2 where σ = 0 corresponds to the deterministic
model.

Table 1. The results of the parameter estima-
tion for different system noises

σ -Log L(VG, VI) VG VI
0.00 62.0712 13.3 4.0
0.05 61.9243 12.8828 3.6645
0.10 61.9042 12.9684 3.7357
0.15 62.0140 12.7485 3.5307

To demonstrate that stochastic model can provide signifi-
cant improvement compared with the deterministic one, a
likelihood-ratio test can be applied Allen (2007). The test
statistic is defined:

R = 2 ((- LogL(α, β))D − (- LogL(α, β))S) (12)

where indexes D and S stand for the deterministic and
stochastic model, respectively.

R is χ2(f ) distributed where f is the difference in the
number of parameters between the two models, in our case
f = 3 - 2 = 1. The critical value for χ2(1 ) at confidence
level of 95 % is 3.84176. In our case, the difference
is 62.0712-61.9042 = 0.167, which is smaller than the
threshold value. Therefore the gray-box modelling has not
proved to be significantly better than the deterministic one
despite better results in Fig. 7. However, there is significant
improvement, and over many patients, the modelling could
improve.

The value of the likelihood function alone does not describe
the error distribution in the sampling points (t = tk). On
Fig. 8 shown the error distributions in case of the ODE
and SDE respectively.

In stochastic modelling case the mean value as well as the
value of the maximum error are smaller, but the standard
deviation is somewhat greater than in case of deterministic
modelling, see Table 2.

Table 2. The results of the parameter estima-
tion for different system noises

Error εk σ=0 σ= 0.1
Mean -0.0102 0.0021
Standard Deviation 0.1086 0.1112
Max Absolute Value 0.5584 0.4589

7. CONCLUSION

An initial step has been taken toward to applying paramet-
ric stochastic variant of the ICING model. However this
numerical experiment was not successful it is advisable to
continue the investigation via involving more parameters
as well as implementing drift terms into other equations,
too. Mathematica proved to be a handy vehicle for carry-
ing out the stochastic numerical simulation.

Fig. 8. Error distributions in the case of the ODE (above)
and SDE (below)
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